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Assignment 6: The Great Stanford Hash-Off
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Hash tables are one of the most ubiquitous data structures in software engineering, and a lot of effort has
been placed into getting them to work quickly and efficiently. In lecture, we coded up chained hashing.
We also talked about two other hashing approaches:

• Linear Probing: A hashing strategy where items can “leak out” of the slots they’re supposed to
stay in. This strategy is surprisingly fast in practice!

• Robin Hood Hashing: This slight modification on linear probing can “smooth out” the cost of
lookups in a linear probing table, allowing the table to function better at higher load factors.

Your task in this assignment is to code up these two hashing strategies and evaluate their performance
against chained hashing. How do they hold up in practice? Which hash table implementations tend to
work well in which scenarios?

Due Friday, February 28th at 11:30AM.
You are welcome to work in pairs on this assignment.

As usual, we recommend making slow and steady progress on this assignment throughout the week rather
than trying to do everything here in one sitting. Here’s our recommended timetable for this assignment:

• Aim to complete the Linear Probing Warmup the day this assignment goes out.

• Aim to complete the Linear Probing Coding component within four days.

• Aim to complete the Robin Hood Warmup within four days.

• Aim to complete the Robin Hood Coding component within six days.

• Aim to complete the Performance Analysis component within seven days.



Problem One: Linear Probing Warmup
The linear probing hash strategy that we talked about in Friday’s class is very different from the style of
hash table (chained hashing) that we saw on Wednesday. Here’s a few of the differences:

• Each slot in a chained hash table is a bucket that can store any number of elements. Each slot in a
linear probing table is either empty or holds a single element.

• Every element in a chained hash table ends up in the slot corresponding to its hash code. Elements
in a linear probing table can leak out of their initial slots and end up elsewhere in the table.

• Deletions in a linear probing table use tombstones;  deletions in chained hashing don’t require
tombstones.

Before moving on, we’d like you to answer a few short answer questions to make sure that you’re comfort-
able with linear probing as a collision resolution strategy.

Answer each of the following questions in the file res/ShortAnswers.txt.

We have a linear probing table containing ten slots, numbered 0, 1, 2, …, and 9. For the sake of
simplicity, we’ll assume that we’re hashing integers and that our hash function works by taking the
input integer and returning its last digit. (This is a  terrible hash function, by the way, and no one
would actually do this. It’s just for the sake of exposition).

Q1. Draw the linear probing table formed by inserting 31, 41, 59, 26, 53, 58, 97, and 93, in that or-
der, into an initially empty table with ten slots. Write out your table by writing out the contents
of the slots, in order, marking empty slots with a period (.) character.

Q2. Draw a different linear probing table that could be formed by inserting the same elements given
above into an empty, ten-slot table in a different order than the one given above, or tell us that
it’s not possible to do this. Assume that you’re using the same hash function.

Q3. Which slots do you have to look at to see if the table from Q1 – the one formed by inserting
the elements in the specific order we gave to you – contains the number 72?

Q4. Which slots do you have to look at to see if the table from Q1 contains the number 137?

Q5. Suppose you remove 41 and 53 from the linear probing table from Q1 using the tombstone
deletion strategy described in class. Draw the resulting table, marking each tombstone slot with
the letter T.

Q6. Draw the table formed by starting with the table you came up with in Q5 and the inserting the
elements 106, 107, and 110, in that order. Don’t forget to replace tombstones with newly-in-
serted values.
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Problem Two: Implementing Linear Probing
Your task in this part of the assignment is to implement the LinearProbingHashTable type. Here’s the
interface for that type, as given in the header file:

class LinearProbingHashTable {
public:
    LinearProbingHashTable(HashFunction<std::string> hashFn);
    ~LinearProbingHashTable();
 

    bool contains(const std::string& key) const;
 

    bool insert(const std::string& key);
    bool remove(const std::string& key);
 

    bool isEmpty() const;
    int  size() const;
 

    void printDebugInfo();
 

private:
    struct Slot {
        std::string value;
        bool isEmpty;
    };
  

    /* The rest is up to you to decide; see below */
};

Endearing C++ Quirks, Part 1: string versus std::string

Inside header files, you have to refer to the string type as  std::string rather than just  string.
Turns out that  what we’ve been calling  string is  really  named  std::string.  The line  using
namespace std; that you’ve placed at the top of all your .cpp files essentially says “I’d like to be
able to refer to things like  std::string,  std::cout, etc. using their shorter names  string and
cout.” The convention in C++ is to not include the using namespace line in header files, so in the
header we have to use the full name std::string.

Think of it like being really polite. Imagine that the  string type is a Supreme Court justice, a
professor, a doctor, or some other job with a cool honorific, and she happens to be your sister. At
home (in your .cpp file), you call just call her string, but in public (in the .h file), you’re supposed
to refer to her as  std::string, the same way you’d call her Dr.  string, Prof.  string, Justice
string, or whatever other title would be appropriate.

The LinearProbingHashTable type is analogous to HashSet<string> in that it stores a collection of
strings with no duplicate elements allowed. However, it differs in a few key ways:

1. The HashSet<string> type does all the work to choose its hash function internally. The Lin-
earProbingHashTable type has its hash function provided to it when it’s created. This is both to
make it easier to test things (we can construct tests where we know exactly where each element is
going to land).

2. The HashSet<string> type has no upper bound to how big it can get. For reasons that we’ll dis-
cuss later, the  LinearProbingHashTable type you’ll be implementing is built to have a fixed
number of  slots,  which is  specified in  the constructor.  (Specifically,  you’re  given a  particular
HashFunction<string>, and that HashFunction<string> is built to work with a specific num-
ber of slots.) This means that there’s a maximum number of elements that can be stored in the ta -
ble, since a linear probing table can’t store more than one element per slot.

In terms of the internal representation of the LinearProbingHashTable: as with the HeapPQueue, you
also need to do all your own memory management, though we suspect this will be easier than the Heap-
PQueue because the size of your hash table never changes. You should represent the hash table as an array
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of objects of the type Slot, where Slot is the struct type defined in LinearProbingHashTable. Each
slot consists of a string, along with a bool indicating whether the slot is empty. If the slot is empty, you
should completely ignore the string value, since we’re pretending the slot is empty in that case. If the
slot is not empty, the string value tells you what’s stored in that particular slot.

You may have noticed that the Slot type doesn’t have a way of marking a slot as being a tombstone. For
now, just ignore that detail; we’ll introduce tombstones later.

We’ve provided you with a fairly extensive set of automated tests you can use to validate that your imple-
mentation works correctly, but they aren’t exhaustive and there are some cases we aren’t checking for. To
assist you with testing, we’ve also provided an “Interactive Linear Probing” environment akin to Assign-
ment 5’s “Interactive PQueue” button that lets you issue individual commands to a linear probing table to
see what happens.

Here’s our recommendation for how to complete this assignment:

Implement the LinearProbingHashTable type in LinearProbingHashTable.h/.cpp. To do so:

1. Read over  LinearProbingHashTable.h to make sure you understand what all the func-
tions you’ll be writing are supposed to do.

2. Add some member variables to  LinearProbingHashTable.h so that you can, at a bare
minimum, remember the hash function given to you in the constructor and maintain an ar-
ray of slots. (You’ll likely need more member variables later.) Remember that you need to
do all your own memory management.

3. Implement the constructor, which should create an empty table and store the hash function
for later use.  You can determine how many slots your table should have by calling the
HashFunction<T>::numSlots() member function on hashFn, which returns the number
of slots that the hash function was constructed to work with.

4. Implement the  size() and  isEmpty() functions, along with the destructor. The  size()
member function should return the number of elements currently in the table, rather than
the number of slots in the table. (Do you see the distinction?) We also strongly recommend
implementing printDebugInfo() in a way that prints out the contents of the table, mark-
ing which slots are empty and which are nonempty. This will help you later on.

5. Implement contains() and insert(). For now, don’t worry about tombstones or remov-
ing elements. You should aim to get the basic linear probing algorithm working correctly.

6. Confirm that you pass all the tests that don’t involve removing elements from the table, in-
cluding the stress tests, which should take at most a couple of seconds each to complete.
Don’t forget that, if you aren’t passing a test, you can set a breakpoint in the test and then
run your code in the debugger to step through what’s going on. You can also use the Interac-
tive Linear Probing option to explore your table in an interactive environment – preferably
with the debugger engaged.

7. Implement the  remove() function. You should use the tombstone deletion algorithm de-
scribed in lecture. This may require you to change the code you’ve written so far:

1. You may – or may not – need to update the  Slot struct type to have some way of
telling you whether a slot contains a tombstone.

2. You may – or may not – need to change your code for  contains() to handle tomb-
stones. It depends on how you implemented contains().

3. You may – or may not – need to change your code for insert() to handle tombstones.
Remember to place elements in the first empty  or tombstone slot that you find. (And
make sure not to insert an element into the table if it’s already there!)

8. Confirm that you pass all the provided tests, including the stress tests.
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Some notes on this problem:

• Make sure you store the hash function that we provide you in the constructor and use that hash
function throughout the table. Otherwise, you’ll likely fail the provided tests, which assume they
know which hash function your table uses.

• Remember that, like the HashSet<string> type, your LinearProbingHashTable should not al-
low for duplicate elements. If the user wants to insert a string that’s already present, you should
not insert a second copy.

• You might be wondering why Slot has an isEmpty bool rather than using the strategy of just as-
signing nullptr to the string when the slot is empty. Remember that in C++, a string represents
an honest-to-goodness string object, so you can’t have a “null string” the same way you can’t have
a “null integer.” Unfortunately, it is legal C++ code to assign nullptr to a string, which C++ in-
terprets as “please crash my program as soon as I get here” rather than “make a null string.”

• Make sure not to read the contents of a string in a Slot if that Slot is empty. If the slot is empty,
it means that the string value there isn’t meaningful. There are a lot of bugs that can arise if you
accidentally read the string in a Slot when the slot is empty.

• Your table should be able to store any strings that the user wants to store, including the empty
string. In particular, you shouldn’t pick some string value to mean “this is a tombstone,” since if
the user were to try to insert that string, your table might have trouble differentiating the user’s
string from an actual tombstone.

• The contains, insert, and remove functions need to function correctly even if the table is full.
Specifically,  insert should return false because there is no more space, and  remove and  con-
tains should operate as usual. You may need to special-case the logic here – do you see why?

• Our Interactive Linear Probing demo uses the same hash function every time. If you want to add a
custom test and use that hash function, you can do so by initializing your hash table as

LinearProbingHashTable table(Hash::consistentRandom(numSlots));

• You are encouraged to add private helper functions, especially if you find yourself writing the
same code over and over again. Just don’t change the signatures of any of the existing functions. If
you do define any helper functions, think about whether they should be marked const. Specifi-
cally, helper functions that don’t change the hash table should be marked  const, while helper
functions that do make changes to the table should not be const.

• You are likely to run into some interesting bugs in the course of coding this one up, and when you
do, don’t forget how powerful a tool the debugger is! Feel free to set breakpoints in the different
test cases so that you can see exactly what your code is doing when it works and when it doesn’t
work. Inspect the contents of your array of slots and make sure that it’s consistent with what you
expect to see. Once you’ve identified the bug – and no sooner – edit your code to fix the underly-
ing problem.

• You must not use any of the container types (e.g. Vector, HashSet, etc.) when solving this prob-
lem. Part of the purpose of this assignment is to let you see how you’d build all the containers up
from scratch.
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Endearing C++ Quirks, Part 2: Returning Nested Types
There’s another charming personality trait of C++ that pops up when implementing member
functions that return nested types. For example, suppose that you want to write a helper func-
tion in your LinearProbingHashTable that returns a pointer to a Slot, like this:

private:                    
    Slot* hsAreCute();

In the .cpp file, when you’re implementing this function, you need to give the full name of
the Slot type when specifying the return type:

LinearProbingHashTable::Slot* LinearProbingHashTable::hsAreCute() {
    // Wow, this pun lost a lot in translation.                    
}                                                                  

While you need to use the full name LinearProbingHashTable::Slot in the return type of
an implementation of a helper function, you don’t need to do this anywhere else. For example,
this code is perfectly legal:

LinearProbingHashTable::Slot* LinearProbingHashTable::hsAreCute() {
    Slot* h = new Slot[137]; // Totally fine!                      
    return h;                                                      
}                                                                  

Similarly, you don’t need to do this if the function takes a Slot as a parameter. For example, 
imagine you have this member function:

private:                            
    void iLostMoneyToA(Slot* machine);

You could implement this function without issue as

void LinearProbingHashTable::iLostMoneyToA(Slot* machine) {
    // Don't make the same mistake as me!                  
}                                                          
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Problem Three: Robin Hood Warmup
Robin Hood hashing is a clever variation on linear probing that reduces the variance in the costs of inser-
tions, deletions, and lookups. Before coding it up, we’d like you to take a few minutes to work through
some quick exercises.

Answer each of the following questions in the file res/ShortAnswers.txt.

We have a Robin Hood hash table containing ten slots, numbered 0, 1, 2, …, and 9. For the sake of
simplicity, we’ll assume that we’re hashing integers and that our hash function works by taking the
input integer and returning its last digit. (As before, this is a terrible hash function, and we’re doing
this just for the sake of simplicity.)

Q7. Draw the Robin Hood table formed by inserting 106, 107, 246, 145, 151, 103, 245, 108, and
221, in that order, into an initially empty table with ten slots. Write out your table by writing
out the contents of the slots, in order, marking empty slots with a period (.) character. Below
each table slot, indicate the distance it is from its home position, marking empty slots distances
with a dash (-) character.

Q8. Draw a different Robin Hood table that could be formed by inserting the same elements given
above into an empty, ten-slot table in a different order than the one given above, or tell us that
it’s not possible to do this. Assume that you’re using the same hash function.

Q9. Which slots do you have to look at to see if the table from Q7 – the one formed by inserting
the elements in the specific order we gave to you – contains the number 345? Remember that,
with Robin Hood hashing, you can cut off a search for an element if the element you’re cur-
rently looking at is closer to home than the element you’re searching for.

Q10. Which slots do you have to look at to see if the table from Q7 contains the number 300?

Q11. Draw the Robin Hood table formed by removing 151 from the table you drew in Q7. Use the
backward-shift deletion algorithm from lecture rather than tombstones.

Q12. Draw the Robin Hood table formed by removing 145 from the table you drew in Q11.
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Problem Four: Robin Hood Hashing
Your next task is to implement the  RobinHoodHashTable type, which represents a hash table imple-
mented using Robin Hood hashing, as described in lecture. The interface for the RobinHoodHashTable
is essentially the same as that for the LinearProbingHashTable: the constructor takes in a HashFunc-
tion<string> that lets you know how many slots to use, you need to support  insert,  contains, and
remove, the table never grows, etc.

There are three core differences between the Robin Hood hashing strategy and linear probing. These dif-
ferences, however, may result in some large changes to the code.

1. When looking up an element in a Robin Hood hashing table, you can sometimes stop your search
earlier by noting that you’re further away from home than the current element is away from its
home.

2. When inserting into a Robin Hood hash table, you may need to shift existing elements further
down the table, incrementing their distances from home.

3. When removing from a Robin Hood hash table, instead of deleting by using tombstones, you use
the backward shift deletion algorithm described in lecture.

You may find that parts of your LinearProbingHashTable will be useful starting points for your design
of the  RobinHoodHashTable. You will certainly find that the changes given above will require you to
abandon or heavily modify other parts.

Here’s what you need to do:

Implement the RobinHoodHashTable type in RobinHoodHashTable.h/.cpp. To do so:

1. Define a custom struct type inside RobinHoodHashTable representing a slot in the table.
There are many ways to do this. You’ll need to be able to store the contents of the slot,
whether the slot is empty, and some information that lets you determine how far away from
home the element in that slot (if any) is.

2. Add some member variables to  RobinHoodHashTable.h to remember the hash function
given to you in the constructor and maintain an array of slots. Remember that you need to
do all your own memory management.

3. Implement the constructor, which should create an empty table and store the hash function
for later use.

4. Implement the  size() and  isEmpty() functions, along with the destructor. The  size()
member function should return the number of elements currently the table, rather than the
number slots in the table. We recommend implementing printDebugInfo() in a way that
prints out the contents of the table, which slots are empty, and how far away from home
each element is.

5. Implement contains() and insert(). Remember that insert may move elements.

6. Confirm that you pass all the tests that don’t involve removing elements from the table, in-
cluding the stress tests, which should take at most a couple of seconds each to complete.
Feel free to use the “Interactive Robin Hood” option to test your code.

7. Implement  remove(). You should use backward shift deletion to accomplish this, which
should not require you to change the implementations of contains or insert.

8. Confirm that you pass all the provided tests, including the stress tests.

You might find the swap function, defined in <algorithm>, useful here. It takes in two arguments and
swaps them with one another. For example:

int x = 137, y = 42;               
swap(x, y); // Now x = 42, y = 137.
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Problem Five: Performance Analysis
We implemented chained hashing in class, and we’ve included a ChainedHashTable type in the Demos/
directory along the lines of the two hash tables you built here. You just implemented a linear probing ta-
ble and a Robin Hood hash table. The question then is – how do they stack up against one another?

Choose the “Performance Analysis” button from the main menu. This option will run the following work-
flow on each of the three table types:

• Insert all words in the file EnglishWords.txt into an empty hash table, measuring the average
cost of each successful insertion.

• Insert  those words again in random order,  measuring the cost  of each unsuccessful  insertion.
(These insertions will fail because these hash tables don’t support duplicates.)

• Look up each word in EnglishWords.txt in that hash table, measuring the average cost of each
successful lookup.

• Look up the capitalized version of each word in that hash table. Since all the words in English-
Words.txt are stored in lower-case, this measures the average cost of each unsuccessful lookup.

• Remove the capitalized versions of each word in the hash table. This measures the average cost of
unsuccessful deletions, since none of those words are present.

• Remove the lower-case versions of each word in the hash table. This measures the average cost of
successful deletions.

The provided starter code will run this workflow across a variety of different load factors, reporting the
times back to you.

As a note, the timing numbers you get will be sensitive to what else is running on your computer. If you
leave your program running time tests in the background while, say, watching a YouTube video, the over-
head of your computer switching back and forth between different processes can skew the numbers you’ll
get back. We recommend that once you click the “Performance Analysis” button, you walk away from
your computer for a minute or two, stretch a bit, and return once all the time trials have finished.

Once you have the data, review the numbers that you’re seeing. Look vertically to see how the times for a
particular hash table compare across load factors, and horizontally to see how the different tables compare
against one another.

Answer each of the following questions in the file res/ShortAnswers.txt.

Q13. Look at the numbers for chained hashing. Compare the cost of successful and unsuccessful
insertions across a variety of load factors. What trends do you see? Offer the best explanation
you can for why those numbers are the way they are. Then, repeat this for lookup times and
removal times.

Q14. Repeat the above exercise for linear probing.

Q15. Repeat the above exercise for Robin Hood hashing.

Q16. If you create a chained hash table, a linear probing table, and a Robin Hood table that each
have the same load factor, which will use the most memory? Which will use the least? Why?

Q17. Based on your answers to the above questions, if you had to pick a single hash table / load fac-
tor combination that offered a good balance of performance and memory usage, which one
would you pick, and why?
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(Optional) Problem Six: Extensions
You’ve just implemented two hash tables! If that isn’t enough for you, or if you want to take things a step
further, you’re welcome to build on the base assignment and do whatever cool and exciting things seem
most interesting to you. Here are some suggestions of things to try out:

• The hash tables we’ve defined here are fixed-sized and don’t grow when they start to fill up. In
practice, you’d pick some load factor and rehash the tables whenever that load factor was reached.
Write code that lets you rehash the tables once they exceed some load factor of your choosing.
Tinker around to see what the optimal load factor appears to be!

• Tombstone deletion has a major drawback: if you fill a linear probing table up, then delete most of
its elements, the cost of doing a lookup will be way higher than if you had just built a brand new
table and filled it in with just those elements. (Do you see why?) Some implementations of these
hash tables will keep track of how many deleted elements there are, and when that exceeds some
threshold, they’ll rebuild the table from scratch to clean out the tombstones. Experiment with this
and see what you can come up with!

• We provide the hash functions in this assignment, but there’s no reason to suspect that our hash
functions are the “best” hash functions and you can change which hash function to use. Research
other hash functions, code them up, and update the performance test (it’s the timeTest function
in the files  Demos/PerformanceGUI.cpp) to use your new hash function. How does your new
hash function compare with ours?

• There are many other hashing strategies you can use. Quadratic probing and double hashing, for
example, are variations on linear probing that cap the number of elements that can be in a slot at
one, but choose a different set of follow-up slots to then look at when finding the next place to
look. Cuckoo hashing is based on a totally different idea: it uses two separate hash functions and
places each element into one of two tables, always ensuring that the elements are either at the spot
in the first table given by the first hash function or the spot in the second table given by the second
hash function. Hopscotch hashing is like linear probing, but ensures that elements are never “too
far” away from their home location. FKS hashing is like chained hashing, but uses a two-layer
hashing scheme to ensure that each element can be found in at most two probes. Read up on one
of these strategies – or another of your choosing – and code them up. How quickly do they run?
You can add your own hash table type to the performance analysis by editing AllHashTables in
the file Demos/PerformanceGUI.cpp.

Submission Instructions
Once you’ve autoindented your code so that it looks beautiful and worked through the Assignment Sub-
mission Checklist, submit the following files on Paperless, plus any other files you modified when writing
up extensions:

• res/ShortAnswers.txt. (Don’t forget this one, even though there’s no code in it!)

• LinearProbingHashTable.h/.cpp. (Remember to submit both of these files!)

• RobinHoodHashTable.h/.cpp. (Remember to submit both of these files!)
And that’s it! You’re done! You’ve just explored how to engineer a hash table and are now an expert at dy-
namic arrays.

Good luck, and have fun!
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	Answer each of the following questions in the file res/ShortAnswers.txt.
	We have a linear probing table containing ten slots, numbered 0, 1, 2, …, and 9. For the sake of simplicity, we’ll assume that we’re hashing integers and that our hash function works by taking the input integer and returning its last digit. (This is a terrible hash function, by the way, and no one would actually do this. It’s just for the sake of exposition).
	Q1. Draw the linear probing table formed by inserting 31, 41, 59, 26, 53, 58, 97, and 93, in that order, into an initially empty table with ten slots. Write out your table by writing out the contents of the slots, in order, marking empty slots with a period (.) character.
	Q2. Draw a different linear probing table that could be formed by inserting the same elements given above into an empty, ten-slot table in a different order than the one given above, or tell us that it’s not possible to do this. Assume that you’re using the same hash function.
	Q3. Which slots do you have to look at to see if the table from Q1 – the one formed by inserting the elements in the specific order we gave to you – contains the number 72?
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	Q5. Suppose you remove 41 and 53 from the linear probing table from Q1 using the tombstone deletion strategy described in class. Draw the resulting table, marking each tombstone slot with the letter T.
	Q6. Draw the table formed by starting with the table you came up with in Q5 and the inserting the elements 106, 107, and 110, in that order. Don’t forget to replace tombstones with newly-inserted values.
	Implement the LinearProbingHashTable type in LinearProbingHashTable.h/.cpp. To do so:
	1. Read over LinearProbingHashTable.h to make sure you understand what all the functions you’ll be writing are supposed to do.
	2. Add some member variables to LinearProbingHashTable.h so that you can, at a bare minimum, remember the hash function given to you in the constructor and maintain an array of slots. (You’ll likely need more member variables later.) Remember that you need to do all your own memory management.
	3. Implement the constructor, which should create an empty table and store the hash function for later use. You can determine how many slots your table should have by calling the HashFunction<T>::numSlots() member function on hashFn, which returns the number of slots that the hash function was constructed to work with.
	4. Implement the size() and isEmpty() functions, along with the destructor. The size() member function should return the number of elements currently in the table, rather than the number of slots in the table. (Do you see the distinction?) We also strongly recommend implementing printDebugInfo() in a way that prints out the contents of the table, marking which slots are empty and which are nonempty. This will help you later on.
	5. Implement contains() and insert(). For now, don’t worry about tombstones or removing elements. You should aim to get the basic linear probing algorithm working correctly.
	6. Confirm that you pass all the tests that don’t involve removing elements from the table, including the stress tests, which should take at most a couple of seconds each to complete. Don’t forget that, if you aren’t passing a test, you can set a breakpoint in the test and then run your code in the debugger to step through what’s going on. You can also use the Interactive Linear Probing option to explore your table in an interactive environment – preferably with the debugger engaged.
	7. Implement the remove() function. You should use the tombstone deletion algorithm described in lecture. This may require you to change the code you’ve written so far:
	1. You may – or may not – need to update the Slot struct type to have some way of telling you whether a slot contains a tombstone.
	2. You may – or may not – need to change your code for contains() to handle tombstones. It depends on how you implemented contains().
	3. You may – or may not – need to change your code for insert() to handle tombstones. Remember to place elements in the first empty or tombstone slot that you find. (And make sure not to insert an element into the table if it’s already there!)
	8. Confirm that you pass all the provided tests, including the stress tests.
	Answer each of the following questions in the file res/ShortAnswers.txt.
	We have a Robin Hood hash table containing ten slots, numbered 0, 1, 2, …, and 9. For the sake of simplicity, we’ll assume that we’re hashing integers and that our hash function works by taking the input integer and returning its last digit. (As before, this is a terrible hash function, and we’re doing this just for the sake of simplicity.)
	Q7. Draw the Robin Hood table formed by inserting 106, 107, 246, 145, 151, 103, 245, 108, and 221, in that order, into an initially empty table with ten slots. Write out your table by writing out the contents of the slots, in order, marking empty slots with a period (.) character. Below each table slot, indicate the distance it is from its home position, marking empty slots distances with a dash (-) character.
	Q8. Draw a different Robin Hood table that could be formed by inserting the same elements given above into an empty, ten-slot table in a different order than the one given above, or tell us that it’s not possible to do this. Assume that you’re using the same hash function.
	Q9. Which slots do you have to look at to see if the table from Q7 – the one formed by inserting the elements in the specific order we gave to you – contains the number 345? Remember that, with Robin Hood hashing, you can cut off a search for an element if the element you’re currently looking at is closer to home than the element you’re searching for.
	Q10. Which slots do you have to look at to see if the table from Q7 contains the number 300?
	Q11. Draw the Robin Hood table formed by removing 151 from the table you drew in Q7. Use the backward-shift deletion algorithm from lecture rather than tombstones.
	Q12. Draw the Robin Hood table formed by removing 145 from the table you drew in Q11.
	Implement the RobinHoodHashTable type in RobinHoodHashTable.h/.cpp. To do so:
	1. Define a custom struct type inside RobinHoodHashTable representing a slot in the table. There are many ways to do this. You’ll need to be able to store the contents of the slot, whether the slot is empty, and some information that lets you determine how far away from home the element in that slot (if any) is.
	2. Add some member variables to RobinHoodHashTable.h to remember the hash function given to you in the constructor and maintain an array of slots. Remember that you need to do all your own memory management.
	3. Implement the constructor, which should create an empty table and store the hash function for later use.
	4. Implement the size() and isEmpty() functions, along with the destructor. The size() member function should return the number of elements currently the table, rather than the number slots in the table. We recommend implementing printDebugInfo() in a way that prints out the contents of the table, which slots are empty, and how far away from home each element is.
	5. Implement contains() and insert(). Remember that insert may move elements.
	6. Confirm that you pass all the tests that don’t involve removing elements from the table, including the stress tests, which should take at most a couple of seconds each to complete. Feel free to use the “Interactive Robin Hood” option to test your code.
	7. Implement remove(). You should use backward shift deletion to accomplish this, which should not require you to change the implementations of contains or insert.
	8. Confirm that you pass all the provided tests, including the stress tests.
	Answer each of the following questions in the file res/ShortAnswers.txt.
	Q13. Look at the numbers for chained hashing. Compare the cost of successful and unsuccessful insertions across a variety of load factors. What trends do you see? Offer the best explanation you can for why those numbers are the way they are. Then, repeat this for lookup times and removal times.
	Q14. Repeat the above exercise for linear probing.
	Q15. Repeat the above exercise for Robin Hood hashing.
	Q16. If you create a chained hash table, a linear probing table, and a Robin Hood table that each have the same load factor, which will use the most memory? Which will use the least? Why?
	Q17. Based on your answers to the above questions, if you had to pick a single hash table / load factor combination that offered a good balance of performance and memory usage, which one would you pick, and why?

